If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+193x+936=0
a = 9; b = 193; c = +936;
Δ = b2-4ac
Δ = 1932-4·9·936
Δ = 3553
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(193)-\sqrt{3553}}{2*9}=\frac{-193-\sqrt{3553}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(193)+\sqrt{3553}}{2*9}=\frac{-193+\sqrt{3553}}{18} $
| 22-4x=12x+118 | | 2a×2a=12a | | 2/3a=3/7 | | 5/6c=1/6 | | |x|+|x+1|=2 | | (x)+(x-2)+3(x+2)-1=87 | | y’=y | | -7(j+3)=-63 | | x=(2-0.01x)x-16 | | x=(2x-0.01x^2)-16 | | 7s+8=-20 | | x=(2x-0.01x)x-16 | | 365/x=17/2 | | -6(j+1)=-42 | | 7r+6=-8 | | 5x+7=4x+21 | | 5s+2)-7=-17 | | -9(x+5)+2=2 | | -2(h+5)+3=-17 | | -4(x+2)=5(x+4) | | 7x-4)+5=33 | | 2(v+5)+3=23 | | -2(-5h-3)=26 | | -2(3x-7)=26 | | 3(-2f+7)=-9 | | 3(5q-8)=21 | | 2(3p+1)=-16 | | 5x-3x+4=-4÷20 | | 3x+5÷2=2x+5÷3 | | 48+v=46 | | 31+s=79 | | 5/2x=23 |